US009201703B2

a2z United States Patent (10) Patent No.: US 9,201,703 B2
Dunshea et al. 45) Date of Patent: Dec. 1, 2015
(54) SHARING KERNEL SERVICES AMONG 1,082,845 Al 4/2004 Accapadi
KERNELS 7,120,753 B2 10/2006 Accapadi et al.
7,219,354 Bl 5/2007 Huang et al.
. 7,461,148 B1 12/2008 Beloussov et al.
(75) Inventors: Afldrew Dunshez.l, Austin, TX. Us); 2003/0195996 Al* 10/2003 Jacobsetal. 709/313
Diane G. Flemming, Pflugerville, TX 2003/0233571 Al* 12/2003 Krausetal. 713/200
(as) 2004/0205755 Al 10/2004 Lescouet et al.
2004/0226017 Al 11/2004 Leonard et al.
(73) Assignee: International Business Machines (Continued)
Corporation, Armonk, NY (US)
FOREIGN PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 Ip 7056746 3/1995
U.S.C. 154(b) by 2878 days. Jp 2002544620 12/2002
(Continued)
(21) Appl. No.: 11/422,656
OTHER PUBLICATIONS
(22) Filed: Jun. 7,2006 Poellabauer et al, “KECho—Event Communication for Distributed
(65) Prior Publication Data Kernel Services”, 2002, Georgia Institute of Technology, pp. 1-15.*
Bozman; Process Control Executive—A New Paradigm for Operat-
US 2007/0288941 Al Dec. 13, 2007 ing System Design; vol. 32; No. 12; May 1990; US.
Aiken; Sharing Data Sets Among Different Program Products That
(51) Int.ClL Share the Same Hard Disk; TDBS Sep. 1984; pp. 2105-2109; JP.
GO6F 3/00 (2006.01) Callaghan; NFS Version 3 Protocol Specification; Sun
GO6F 9/44 (2006.01) Microsystems, Inc. Jun. 1995; US.
GO6F 9/46 (2006.01) “U.S. Appl. No. 11/301,113 Final Office Action”, Apr. 2, 2015, 24
GO6F 13/00 (2006.01) pages. ,
GO6F 9/50 (2006.01) (Continued)
(52) US.CL
CPC e, GOG6F 9/5077 (2013.01) Primary Examiner — Timothy A Mudrick
(58) Field of Classification Search (74) Attorney, Agent, or Firm — DeLizio Law, PLLC
CPC ittt GO6F 9/5077
USPC oo 719/319,310,313 (57) ABSTRACT
See application file for complete search history. Sharing kernel services among kernels, including receiving,
. by a partition manager from an application in a logical parti-
(56) References Cited tion, a first system call for a kernel service from a first kernel,

U.S. PATENT DOCUMENTS

the first system call having form and content compatible with
the first kernel, generating, in dependence upon the first sys-
tem call, a second system call for the kernel service from a
second kernel, the second system call having form and con-
tent compatible with the second kernel, and sending the sec-
ond system call through the partition manager to the second

15 Claims, 7 Drawing Sheets

5,000,545 A * 6/1999 Frese et al. ..o, 709/208
6075939 A * 6/2000 Bunnell et al. 07
6.078.929 A % 6/2000 RAO woovroroerocororrooor e 11
6272519 Bl 82001 Shearer, Jr.
6.279.046 BL* 82001 Armstrong etal. 710/5 :
6,647,508 B2 11/2003 Zalewski of al. kernel for execution.
6,691,146 BL* 2/2004 Armstrong et al. 718/100
1082006 Al 4/2004 Ault

Computer 182

‘System Call 502 [T tPAR 112

Receive 1st System Call For A Kemel !
Service From st Kemel 508

[Tkeme! 182

Raceive 1st Systam
Call 82

Determine That Kernel
Service Is To Be
Provided By 2nd Kemel

804

System Call 512

Content
518

(Generate 2nd System|
CallFor The Kernel
Service From 2nd

Kemel 510

[Send 2nd System Call Through|
‘The Partition Manager To 2nd
Kemel For Execution 518

Pravide A Response 550|

Response B0

Form 7 Content
812

810

Provide Kemel Service 520

Kemel

104 |

Sanics 522

Pariition Manager 112|

US 9,201,703 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS
2005/0125486 Al* 6/2005 Chrysanthakopoulos
etal. . 709/201
1/2006 Desaietal. ... 718/100

6/2007 Dunshea et al.
9/2009 Wangetal.cccooeernrennne. 718/1

2006/0010446 Al*
2007/0136721 Al
2009/0228882 Al*

FOREIGN PATENT DOCUMENTS

JP 2004535615
JP 2005513644

11/2004
5/2005

OTHER PUBLICATIONS
“U.S. Appl. No. 11/301,113 Office Action”, Oct. 29, 2014, 18 pages.

Janssen, “Virtual Private Server (VPS)”, http://www.techopedia.
com/definition/4800/virtual-private-server-vps, Copyright © 2010-
2015 Janalta Interactive Inc.; accessed from Internet on Apr. 2, 2015,

1 page.

Marron, “Sharing Read-Only Memory Among Multiple Logical Par-
titions”, TBD, Mar. 1993, vol. 36; No. 3.

* cited by examiner

U.S. Patent Dec. 1, 2015 Sheet 1 of 7 US 9,201,703 B2
[1
184—4 Other Computers
182
Computer RAM 168
152
Logical Partition 114
\J Application 108 Operating System 110
Comms
Adapter Logical Processor 106
167
Kernel 102 Kernel 104
Virtual Processor
122 Interface 124
Physical
Processors Partition Manager 112
156

System Bus 160

178

I/O Interface

Hard
Disk
170

Optical

Flash
172 174

Non-Volatile Memory 166

User Input Device
181

Display Device

180

FIG. 1

U.S. Patent

Dec. 1, 2015 Sheet 2 of 7 US 9,201,703 B2
Computer 152
ST Mode LPAR 202 SMT Mode LPAR 204
Application 208 Application 208
Operating System 210 Operating System 220
GUI 212 GUI 222
Shell 214 Shell 224
Utilites 216 Utilities 226
Library 218 <t - Library 228
LP LP LP LP LP LP
230 232 234 236 238 240
\ Y | N |
\ Interface 124 \ \ /
1.0 0.5 0.25 0.25 05 05
Partition

Manager
12
Kernel Kernel
VP VP 102 104 VP VP
242 244 246 248
\1 0 0.5 0.5

0. 1.0
~N o~ e
Physical Physical Physical
Processor Processor Processor
250 252 254

FIG. 2

U.S. Patent Dec. 1, 2015 Sheet 3 of 7 US 9,201,703 B2

Dispatch

Timeout
314

Create Awaken 318

302

FIG. 3A

Dispatch

Timeout
334

Awaken 338

FIG. 3B

U.S. Patent Dec. 1, 2015 Sheet 4 of 7 US 9,201,703 B2

LPAR 11 Computer 152

Application 108

| Interface 402
0

-]

I
Kernel 102 Kernel 104
Service 404 Service 406

Partition Manager 112

FIG. 4A

Computer 152

LPAR 11

Application 108

—438- — 4()}

Kernel 102 Kernel 104

Sharing Interface H—426—p Interface [—4289{ Service
Module [| 422 424 406

42
420 T—ﬁ -430—

Partition Manager 11

FIG. 4B

U.S. Patent Dec. 1, 2015 Sheet 5 of 7 US 9,201,703 B2

Computer 152
System Call 502 LPAR 114
Form Content Application 108 | |«
504 506 |
I.ﬁ_]
|
Receive 1st System Call For A *
Kernel Service From 1st Kernel Kernel 102 Send
508
— ‘l Service 522 Response
Y 524

Generate 2nd System Call For
The Kernel Service

From 2nd Kernel 510 Response 526
/ Form / Content /
System Call 512 528 530

Form Content
514 516

Generate 2nd Response 560

Send 2nd System Call Through
The Partition Manager To 2nd
Kernel For Execution 518

Receive 1st Response From 2nd

I—| Kernel 558

Kernel 104 +
Provide Kemnel Service 520 Response 552
Provide A Response 550 Form Content
554 556

A

Service 522

Partition Manager 11

FIG.5

U.S. Patent Dec. 1,2015 Sheet 6 of 7 US 9,201,703 B2
Computer 152
System Call 502 LPAR 114
Form Content —
504 M Application 108
I A
I
v |
Receive 1st System Call For A Kernel 53— — JI
Service From 1st Kernel 508 -
N
Kernel 102 Y
6 Determine That Kernel
Receive 1st System Service Is To Be
Call 602 ™| Provided By 2nd Kernel | [>°9 Response
816
604
System Call 512 Generate 2nd System T
Call For The Kernel Receive
t
Form Conten Service From 2nd Response 814
514 516
Kernel 510
A
Send 2nd System Call Through
The Partition Manager To 2nd = 8 08
Kernel For Execution 518 csponse euo
Form Content
810 812

Y

Provide A Response 550

Provide Kernel Service 520

5

Service 522

Kernel
104

Partition Manager 112

FIG. 6

U.S. Patent Dec. 1, 2015 Sheet 7 of 7 US 9,201,703 B2

Computer 152

LPAR 114
System Call 502

Form Content Application 108
504 506

y
Receive 1st System Call For A
Kernel Service From 1st Kernel
508
ol 100 Generic Response
erne
—= |/ 714
Generate 2nd System Call For The Kernel Generic Generic
Service From 2nd Kernel 510 Form Content
Generate Generic System Call 716 18
102
Generic System Call 704 Kernel 104 ’J
Generlc Generic .
F700rén CoYr(t)tgnt Provide A Generic
P Response
112
Provide Kernel Service
Send 2nd System Call 710
Through The Partition f
Manager To 2nd Kernel For
Execution 518 Service 522
Partition Manager 112

FIG. 7

US 9,201,703 B2

1
SHARING KERNEL SERVICES AMONG
KERNELS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related by inventive entity to the com-
monly-assigned U.S. patent application Ser. No. 11/301,113
entitled “Sharing A Kernel Of An Operating System Among
Logical Partitions”, which is hereby incorporated by refer-
ence herein in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The field of the invention is data processing, or, more
specifically, methods, apparatus, and products for sharing
kernel services among kernels.

2. Description of Related Art

A thread is a unit of software execution on a multi-threaded
computer. That is, a thread is an executable entity of work in
a computer system. A thread can be viewed of as a separate
stream of executable computer program instructions. On such
a computer, software programs are executed in units of execu-
tion called ‘processes’ that include all the processor registers,
code segment and offset registers, data segment and offset
registers, stack segment and offset registers, flag registers,
instruction pointer registers, program counters, and so on,
needed for execution of software programs. For efficiency,
‘processes’ are organized further as threads, where each
thread of a process individually possesses all the attributes
needed for execution except that a thread shares memory
among all the other threads of a process, thereby reducing the
overhead of operating system switches from thread to thread
(‘context switches’).

Two modes of multi-threading are discussed in this speci-
fication: simultaneous multi-threading (‘SMT”) and single-
threaded (‘ST”) multi-threading. ST multi-threading is time-
multiplexed multi-threading, that is, multi-threading by use
of time slices or time quanta. In ST mode, both individual
threads and virtual processors are assigned to a portion of a
processor’s computing capacity apportioned in segments of
time, each of which is referred to as a ‘time slice’ or ‘time
quantum.’

Some processors accept computer program instructions
from more than one thread simultaneously, a feature referred
to as ‘simultaneous multi-threading’ or ‘SMT. The idea
behind SMT is to share the processor hardware on a chip
among multiple threads of a multi-threaded workload. SMT
is a technique that lets multiple independent threads issue
instructions to a single physical processor in a single process-
ing cycle. Traditional processor architectures issue instruc-
tions to a processor from only one thread at a time. An
example of a processor that implements SMT as described
here is IBM’s Power5™ processor.

SMT is implemented on physical processors each of which
is capable of accepting instructions from more than one
thread of execution simultaneously. Also in SMT mode, both
virtual processors and threads running on virtual processors
may be apportioned through time slices. A thread of execu-
tion on a virtual processor in SMT mode may be viewed as
running on a logical processor. A virtual processor running on
a physical processor in SM'T mode therefore may be viewed
as supporting more than one logical processor. Whether a
thread runs in ST mode or in SMT mode, a thread running on
a logical processor is unaware of the logical or virtual nature
of the processor and views it as a traditional processor.

10

15

20

25

30

35

40

45

50

55

60

2

Multiprocessing is implemented in computers that support
multiple logical partitions in ST mode or SMT mode parti-
tion-by-partition. Each partition traditionally implements an
entire separate operating system including a separate kernel.
Kernels support applications running in logical partitions by
providing kernel services. Although the types of services
provided by kernels are generally similar, different kernels
may implement services in different ways. For this reason,
some kernels may be better than other kernels at providing
certain kernel services. In traditional art, however, a kernel
having a superior service cannot share such a service with
another kernel—not even with another kernel of the same
type. An instance of a Unix kernel, for example, with a supe-
rior disk /0 driver traditionally could not make its disk i/o
driver available to threads of execution running against
another Unix kernel even if the other Unix kernel were of
exactly the same type and version.

SUMMARY OF THE INVENTION

Methods, apparatus, and computer program products are
disclosed for sharing kernel services among kernels that
include receiving, by a partition manager from an application
in a logical partition, a first system call for a kernel service
from a first kernel, the first system call having form and
content compatible with the first kernel, generating, in depen-
dence upon the first system call, a second system call for the
kernel service from a second kernel, the second system call
having form and content compatible with the second kernel,
and sending the second system call through the partition
manager to the second kernel for execution.

The foregoing and other objects, features and advantages
of the invention will be apparent from the following more
particular descriptions of exemplary embodiments of the
invention as illustrated in the accompanying drawings
wherein like reference numbers generally represent like parts
of exemplary embodiments of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block diagram of automated computing
machinery comprising an exemplary computer useful in shar-
ing kernel services among kernels according to embodiments
of the present invention.

FIG. 2 sets forth a functional block diagram illustrating an
exemplary system for sharing kernel services among kernels
according to embodiments of the present invention.

FIG. 3A sets forth a state diagram illustrating exemplary
thread states for sharing kernel services among kernels
according to embodiments of the present invention.

FIG. 3B sets forth a state diagram illustrating exemplary
virtual processor states for scheduling virtual processors in a
computer system that shares kernels according to embodi-
ments of the present invention.

FIG. 4 A sets forth a functional block diagram illustrating a
further exemplary system for sharing kernel services among
kernels according to embodiments of the present invention.

FIG. 4B sets forth a functional block diagram illustrating a
further exemplary system for sharing kernel services among
kernels according to embodiments of the present invention.

FIG. 5 sets forth a flow chart illustrating an exemplary
method for sharing kernel services among kernels according
to embodiments of the present invention.

FIG. 6 sets forth a flow chart illustrating a further exem-
plary method for sharing kernel services among kernels
according to embodiments of the present invention.

US 9,201,703 B2

3

FIG. 7 sets forth a flow chart illustrating a further exem-
plary method for sharing kernel services among kernels
according to embodiments of the present invention.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

Exemplary methods, apparatus, and products for sharing
kernel services among kernels according to embodiments of
the present invention are described with reference to the
accompanying drawings, beginning with FI1G. 1. Sharing ker-
nel services among kernels in accordance with the present
invention is implemented upon automated computing
machinery, that is, on one or more computers. FIG. 1 sets
forth a block diagram of automated computing machinery
comprising an exemplary computer (152) useful in sharing
kernel services among kernels according to embodiments of
the present invention. The computer (152) of FIG. 1 includes
several physical processors (156) as well as random access
memory (“RAM”) (168) which is connected through a sys-
tem bus (160) to the physical processors and to other compo-
nents of the computer.

Stored in RAM (168) is a logical partition (114), an appli-
cation program (108), an operating system (110), a logical
processor (106), a partition manager (112), two or more ker-
nels (102, 104), a virtual processor (122), and kernel sharing
interface (124). A logical partition (‘LPAR”) (114) is a set of
data structures and services that enables distribution of com-
puter resources within a single computer to make the com-
puter function as if it were two or more independent comput-
ers. Eachlogical partition is assigned all the resources it needs
to operate as though it were an independent computer includ-
ing, processor time, memory, an operating system, and so on.
A logical partition and the resources made available to appli-
cations through a logical partition are sometimes referred to
collectively as a ‘virtual machine.” For convenience of expla-
nation, the system of FIG. 1 includes only one logical parti-
tion, but systems that share kernel services among kernels
according to embodiments of the present invention may sup-
port any number of logical partitions.

An application program (108) is a module of user-level
computer program code.

Application programs are non-privileged code that must
obtain access to computer resources by calls through to a
kernel of an operating system.

An operating system (110) is a layer of system software
that schedules threads and provides functions for making
system resources available to threads, including memory
access, access to input/output resources, and so on. Operating
systems also control allocation and authorization for access to
computer resources. Operating systems carry out low-level,
basic tasks, such as recognizing input from a keyboard, send-
ing output to a display screen, keeping track of files and
directories on a disk drive, and controlling peripheral devices
such as disk drives and printers. The operating system is also
responsible for security, ensuring that unauthorized users do
not access the system and that threads access only resources
they are authorized to access. Many operating system func-
tions are implemented by a kernel, in this example, a primary
kernel (102) or a shared kernel (104). Operating systems
useful for sharing kernel services among kernels according to
embodiments of the present invention are multi-threading
operating systems, examples of which include UNIX™,
Linux™, Microsoft XP™, AIX™, [BM’s i5/0S™, and oth-
ers as will occur to those of skill in the art.

A logical processor (106) is an operating system’s struc-
ture for scheduling threads for execution in a logical partition.

10

15

20

25

30

35

40

45

50

55

60

65

4

That is, rather than scheduling threads for execution on a
physical processor or a virtual processor, operating system
(110) schedules threads for execution on a logical processor
(106). Scheduling a thread on a logical processor provides
convenient structure and processing in which the thread
appears, from the point of view of the thread, to have at its
disposal all the resources of an entire logical partition. Virtual
processors are apportioned fractions of a physical processor.
A logical processor, however, is logically an entire proces-
sor—despite the fact that it is physically running in a frac-
tional time slice just like all other execution on the machine.
A thread running on a logical processor in an LPAR appears,
therefore, from its point of view, to have all the resources of an
entire independent computer. That is, the logical processor is
the object upon which a dispatcher in an operating system
running in a partition dispatches threads, and a virtual pro-
cessor is what is dispatched by the partition manager. In an
LPAR operating in ST mode, the correspondence between
logical processors and virtual processors is one-to-one, one
logical processor for each virtual processor. In an LPAR
operating in SMT mode, the correspondence between logical
processors and virtual processors is N-to-one, where N is the
number of logical processors supported on a virtual proces-
sor, that is, N logical processors for each virtual processor.

A virtual processor (122) is a subsystem, composed of data
structures and computer program instructions, that imple-
ments assignment of processor time to a logical partition. A
shared pool of physical processors supports the assignment of
partial physical processors (in time slices) to a logical parti-
tion. Such partial physical processors shared in time slices are
referred to as “virtual processors.” Physical processors held in
a shared processing pool are shared among logical partitions.
In the examples in this specification, physical processors are
shared according to processing units with 1.0 processing units
representing the processing capacity of one physical proces-
sor. Assigning a thread to run on a virtual processor is typi-
cally carried out by assigning the thread to run on a logical
processor of a virtual processor. In ST mode, each virtual
processor has one logical processor. In SMT mode, however,
in these examples, each virtual processor has two logical
processors.

The partition manager (112) of FIG. 1 is a layer of system
software that runs under logical partitions. That is, a partition
manager (112) runs between the logical partitions and under-
lying computer hardware, physical computer components,
including physical processors (156). The partition manager
supports and enables establishing and running multiple oper-
ating systems and applications in multiple logical partitions.
Among other things, the partition manager supports a user’s
or system administrator’s establishing partitions, virtual pro-
cessors, and logical processors. Just as a kernel of an operat-
ing system in a computer that supports multiple logical par-
titions schedules and dispatches threads on logical
processors, the partition manager schedules and dispatches
virtual processors on physical processors.

Because an operating system in a logical partition is often
used to run a particular application or set of applications, a
partition manager makes it possible to run multiple operating
systems and their applications in a single computer, reducing
overall hardware costs. Production and test systems can run at
the same time in the same hardware. In addition, with a
partition manager supporting multiple logical partitions, dif-
ferent operating systems such as Windows™ and Linux™
can share the same underlying computer hardware. A parti-
tion manager is the kind of software sometimes referred to as
a ‘hypervisor, a ‘virtualization manager, or a ‘virtual
machine monitor.

US 9,201,703 B2

5

In the example of FIG. 1, partition manager (112) includes
kernels (102, 104). A kernel is the core of an operating sys-
tem. A kernel is the privileged module or modules sometimes
also known as a ‘system executive’ or ‘system monitor.” The
kernel is the software responsible for providing secure access
to computer system hardware on behalf of threads of execu-
tion in applications and in other operating system compo-
nents—including access to memory, processing capacity,
input/output resources, and so on. The kernel also schedules
threads of execution that make up application programs as
well as operating system processes. The kernel also typically
provides services for interprocess communications and syn-
chronization such as memory locks, signals, and semaphores.
Kernels typically also provide hardware abstraction—a set of
instructions universal to all devices of a certain type—to hide
the underlying complexity from applications and from other
components of an operating system. Hardware abstraction
components in turn rely upon software drivers to provide
functions specific to a hardware device’s manufacturing
specifications. In summary, the kernel provides kernel ser-
vices that:

control and mediate access to system hardware;

implement and support fundamental abstractions: pro-

cesses, threads, files, devices, and so on;

allocate and schedule system resources: memory, proces-

sors, disks, file descriptors, process descriptors, thread
descriptors, and so on;

enforce security and protection of system resources; and

respond to user and application requests for service

through system calls.

Readers of skill in the art will recognize that operating
system kernels (102, 104), which would traditionally be
installed inside an operating system, in this example are
installed in a partition manager (112), so that system calls
from application programs for kernel services are vectored
through the partition manager. Installing a kernel in a parti-
tion manager conserves system resources by allowing more
than one logical partition to use the same instance of a kernel.
Installing kernels in partition managers is described in detail
in the U.S. patent application Ser. No. 11/301,113 entitled
“Sharing A Kernel Of An Operating System Among Logical
Partitions”, referenced above, and incorporated by reference
herein in its entirety.

Inthe example computer of FIG. 1, partition manager (112)
exposes kernel sharing interface (124). Kernel sharing inter-
face (124) is an application programming interface or ‘APL;’
a computer software module implemented, for example, as a
library of computer program instructions, configured to
facilitate sharing kernel services among kernels according to
embodiments of the present invention. Kernel sharing inter-
face (124) includes computer program instructions capable of
receiving from an application (108) in a logical partition
(114), a first system call for a kernel service from a first kernel
(102), generating, in dependence upon the first system call, a
second system call for the kernel service from a second kernel
(104), and sending the second system call through the parti-
tion manager (112) to the second kernel (104) for execution.
Kernel sharing interface (124) in this example also includes
computer program instructions capable of receiving a
response from kernel (104), which provides the kernel ser-
vice, and sending a response to the application (108) in the
logical partition (114). Kernel sharing interface (124) may
include computer program instructions capable of ensuring
that the response has form and content compatible with the
first kernel (102).

20

25

30

35

40

45

55

6

The computer software components, application (108),
logical partition (114), logical processor (106), operating sys-
tem (110), partition manager (112), virtual processor (122),
kernels (102, 104), and so on, in the example of FIG. 1 are
shown disposed in RAM (168). Readers will recognize, how-
ever, many components of such software may be stored in
non-volatile memory (166) also. Computer (152) of FIG. 1
includes non-volatile computer memory (166) coupled
through a system bus (160) to physical processors (156) and
to other components of the computer (152). Non-volatile
computer memory (166) may be implemented as a hard disk
drive (170), optical disk drive (172), electrically erasable
programmable read-only memory space (so-called
‘EEPROM” or ‘Flash’ memory) (174), RAM drives (not
shown), or as other kinds of non-volatile memory as will
occur to those of skill in the art.

The example computer of FIG. 1 includes one or more
input/output interface adapters (178). Input/output interface
adapters in computers implement user-oriented input/output
through, for example, software drivers and computer hard-
ware for controlling output to display devices (180) such as
computer display screens, as well as user input from user
input devices (181) such as keyboards and mice.

The exemplary computer (152) of FIG. 1 includes a com-
munications adapter (167) for implementing data communi-
cations (184) with other computers (182). Such data commu-
nications may be carried out, for example, through data
communications networks such as IP networks—and in other
ways as will occurto those of skill in the art. Communications
adapters implement the hardware level of data communica-
tions through which one computer sends data communica-
tions to another computer, directly or through a network.
Examples of communications adapters useful for sharing ker-
nel services among kernels according to embodiments of the
present invention include modems for wired dial-up commu-
nications, Ethernet (IEEE 802.3) adapters for wired network
communications, and 802.11b adapters for wireless network
communications.

For further explanation, FIG. 2 sets forth a functional block
diagram illustrating an exemplary system for sharing kernel
services among kernels according to embodiments of the
present invention. The system of FIG. 2 includes two logical
partitions, one in ST mode (202) and one in SMT mode (204).
The system of FIG. 2 includes six logical processors, two
(230, 232) for logical partition (202) and four (234, 236, 238,
240) for logical partition (204). The system of FIG. 2 also
includes four virtual processors, two (242, 244) assigned to
logical partition (202) and two (246, 248) assigned to logical
partition (204). The system of FIG. 2 also includes three
physical processors (250, 252, 254). In this example, the
processing capacity of the three physical processors (250,
252, 254) is apportioned to the logical partitions as follows:

All of the processing capacity of physical processor (250)
is assigned entirely to virtual processor (242), so that
logical processor (230) has available to it the entirety of
physical processor (250).

One-half the processing capacity of physical processor
(252) is assigned to virtual processor (244), so that logi-
cal processor (232) has available to it in time slices
one-half of physical processor (252).

One-half the processing capacity of physical processor
(252) is assigned to virtual processor (246). Virtual pro-
cessor (246) is assigned to logical partition (204) which
runs in SMT mode with two logical processors (234,
236) for virtual processor (246). Logical processor (234)

US 9,201,703 B2

7

and logical processor (236) each has available to it in
time slices one-fourth of the processing capacity of
physical processor (252).

All of the processing capacity of physical processor (254)
is assigned to virtual processor (248). Virtual processor
(248) is assigned to logical partition (204) which runs in
SMT mode with two logical processors (238, 240) for
virtual processor (248). Logical processor (238) and
logical processor (240) each has available to it in time
slices one-half of the processing capacity of physical
processor (254).

The system of FIG. 2 includes a partition manager (112).
The partition manager is a layer of system software that runs
under logical partitions. That is, a partition manager (112)
runs between the logical partitions and underlying computer
hardware, physical computer components, including physical
processors (250, 252, 254). The partition manager supports
and enables establishing and running multiple operating sys-
tems and applications in multiple logical partitions. Among
other things, the partition manager supports a user’s or system
administrator’s establishing partitions, virtual processors,
and logical processors. Just as a kernel of an operating system
in a computer that supports multiple logical partitions sched-
ules and dispatches threads on logical processors, the parti-
tion manager schedules and dispatches virtual processors on
physical processors. Because an operating system in a logical
partition is often used to run a particular application or set of
applications, a partition manager makes it possible to run
multiple operating systems and their applications in a single
computer, reducing overall hardware costs. Production and
test systems can run at the same time in the same hardware. In
addition, with a partition manager supporting multiple logical
partitions, different operating systems such as Windows™
and Linux™ can share the same underlying computer hard-
ware.

In the example of FIG. 2, partition manager (112) includes
kernel sharing interface (124). Kernel sharing interface (124)
is an application programming interface or ‘API,” a computer
software module implemented, for example, as a library of
computer program instructions, configured to facilitate shar-
ing kernel services among kernels according to embodiments
of the present invention. Kernel sharing interface (124)
includes computer program instructions capable of receiving
from an application (206, 208) in a logical partition (202,
204), a first system call for a kernel service from a first kernel
(102), generating, in dependence upon the first system call, a
second system call for the kernel service from a second kernel
(104), and sending the second system call through the parti-
tion manager (112) to the second kernel (104) for execution.
Kernel sharing interface (124) may further include computer
program instructions capable of receiving a response from
kernel (104) which provides the kernel service, and sending a
response to the application (206, 208) in the logical partition
(202, 204) that sent the first system call. Kernel sharing inter-
face (124) may include computer program instructions
capable of ensuring that the response has form and content
compatible with the first kernel (102).

The system of FIG. 2 includes two operating systems (210,
220), one each in logical partition (202) and logical partition
(204) respectively. In this example, operating system features
directly accessible to applications or users remain in the logi-
cal partitions, while the operating system kernels (102, 104)
are installed in partition manager (112). Such features include
support for graphical user interfaces (‘GUIs”) (212, 222).
Such features also include support for shells (214, 224) that
provide, for example, command line interfaces to operating
system utilities and library functions. Operating system fea-

20

25

35

40

45

8

tures directly accessible to applications or users also include
system utilities (216, 226). System utilities include programs
for system management that are typically accessible through
a GUI or a shell such as, for example, programs to create,
open, or delete files, programs to create and navigate direc-
tories of a file system, programs to read and set environment
variables, search for text inside a file, and so on.

Operating system features directly accessible to applica-
tions or users may include and may be implemented as librar-
ies of system calls (218, 228). System call libraries expose
application programming interfaces (‘APIs’) that allow call-
ing programs to gain access to hardware-dependent services
and other protected system resources by calls into privileged
software routines inside a kernel (102, 104). Such calls to
privileged code in kernel space are effected by interrupts or
software traps called from within functions of the system call
libraries. Access to function calls within system call libraries
typically is effected by compiling one or more system call
libraries into an application or utility or into another library
that is dynamically loadable at run time—a dynamically
linked library or ‘DLL.

For further explanation, FIG. 3A sets forth a state diagram
illustrating exemplary thread states for sharing kernel ser-
vices among kernels according to embodiments ofthe present
invention. The bubbles in FIG. 3 A represent thread states. The
arrows between the bubbles represent state transitions
effected by kernel functions. The thread states represented in
FIG. 3A include a create state (302), aready state (304), arun
state (306), a wait state (308), and a stop state (310). A thread
resides temporarily in the create state (302) when the thread is
first created at the request of another thread, to give the kernel
time to gather information and resources for the thread. As
soon as the kernel prepares the thread to run, it is ‘started’
(303), that is, moved to the ready state (304).

Threads in the ready state (304) are queued, in a ready
queue (not shown) waiting for an opportunity to run. The
process of determining which ready thread will run next is
called ‘scheduling.’ There are many scheduling algorithms,
FIFO, Round Robin, Priority, and so on, and any of them may
be used in a system that shares kernel services among kernels
according to embodiments of the present invention. The ker-
nel function for moving a thread from ready state to run state
is called “dispatching’ (312). In fact, ‘dispatched,” ‘running,’
and ‘in run state,” are generally synonymous.

When a thread is dispatched, that is, in run state (306), the
thread is presently assigned to execute on a logical processor.
Whether the thread is physically executing depends on
whether the logical processor’s virtual processor is currently
dispatched through its partition manager, that is, currently
executing in a time slice on a physical processor. A ready
queue for a logical processor may contain one, two, or more
threads in ready state waiting to run on the logical processor.
Only one thread at a time is ordinarily placed in run state on
a logical processor.

Threads can lose possession of the logical processor, be
removed from run state to ready state, by preemption or time
out (314). A thread is preempted when a thread having a
higher priority enters the ready queue for the logical proces-
sor. A thread times out if it retains possession of the logical
processor, that is, remains in run state, through its entire time
slice.

A thread also may leave run state (306) by issuing a system
call (316) and entering wait state (308)—to wait for comple-
tion of the system call. Such system calls may be requests for
any service provided by a kernel, including for example,
intentional requests to sleep or wait for a certain period of

US 9,201,703 B2

9

time, requests for data to be read from or written to disk,
requests for data to be read from or written to input/output
resources, and so on.

For further explanation, FIG. 3B sets forth a state diagram
illustrating exemplary virtual processor states for scheduling
virtual processors in a computer system that shares kernels
according to embodiments of the present invention. The
bubbles in FIG. 3B represent virtual processor states. The
arrows between the bubbles represent state transitions
effected by functions of a partition manager. The virtual pro-
cessor states represented in FIG. 3B include a create state
(322), aready state (324), a run state (326), a wait state (328),
and a stop state (330). A virtual processor resides temporarily
in the create state (322) when the virtual processor is first
created, typically at boot time, to give the partition manager
time to gather information and resources for the virtual pro-
cessor. As soon as the partition manager prepares the virtual
processor to run, the virtual processor is ‘started’ (323), that
is, moved to the ready state (324).

Virtual processors in the ready state (324) are queued in a
ready queue (not shown) waiting for an opportunity to run. A
partition manager schedules virtual processors to run, accord-
ing to one or more scheduling algorithms, Round Robin,
Priority, and so on. The partition manager dispatches (322)
from the ready state to the run state the single virtual proces-
sor from the ready queue presently most qualified for actual
possession of the physical processor to which the virtual
processor is assigned. Only one virtual processor at a time is
ordinarily placed in run state on a physical processor.

Virtual processors can lose possession of the physical pro-
cessor and be removed from run state to ready state by pre-
emption or by time out (334). A virtual processor is pre-
empted when a virtual processor having a higher priority
enters the ready queue for the physical processor. A virtual
processor times out if it retains possession of the physical
processor, that is, remains in run state, through its entire time
slice.

A virtual processor also may leave run state (326) by issu-
ing a system call (336) and entering wait state (328)—to wait
for completion of the system call. Such system calls include
intentional requests to sleep or wait for a certain period of
time, requests for data to be read from or written to disk,
requests for data to be read from or written to input/output
resources, and so on. When a thread running on a virtual
processor, that is, running on a logical processor of a logical
partition, issues a system call to wait for keyboard input or to
read a file from disk, for example, the virtual processor may
determine that there is no need for the virtual processor to
continue to occupy the physical processor merely to do noth-
ing until a keystroke arrives or the disk read completes. In this
circumstance, the virtual processor may put itself to sleep for
a certain period off time, a tenth of a second for example.
Returning the virtual processor from wait state to ready state
is referred to as ‘awakening’ (338) the virtual processor.

For further explanation, FIG. 4A sets forth a functional
block diagram illustrating a further exemplary system for
sharing kernel services among kernels according to embodi-
ments of the present invention. The system of FIG. 4A
includes logical partition (114) running application (108),
partition manager (112), kernels (102, 104), which share ker-
nel services (404, 406), and kernel sharing interface (402), all
running in computer (152).

Inthe system of FIG. 4A, application (108), sends a system
call to a kernel (102) in partition manager (112) through
kernel sharing interface (402). Kernel sharing interface (402)
is a software module of partition manager (112) that directs
communications to and from kernels (102, 104) in the parti-

30

40

45

10

tion manager, and transforms the communications to appro-
priate form and content for the recipient. In this example,
application program (108) effects a system call (434) to ker-
nel (102) for kernel service (404), a kernel service that kernel
(102) is configured to obtain from kernel (104). The system
call (434) is interrupt-vectored through partition manager
(112) to kernel (102). Kernel (102) receives the system call,
which has form and content (parameter values and parameter
sequence) compatible with kernel (102), and determines that
the kernel service requested by the system call is to be pro-
vided by the second kernel (104). Kernel (102) sends (410)
the system call for the kernel service to be provided by kernel
(104) to kernel sharing interface (402) with instructions to
send the system call to kernel (104).

In response to the instruction from kernel (102) to send the
system call to kernel (104), kernel sharing interface (402)
generates a second system call for the kernel service from
kernel (104). Kernel sharing interface (402) generates the
system call to kernel (104) with form and content (parameter
values and parameter sequence) compatible with kernel
(104). Kernel sharing interface (402) sends (416) the second
system call to kernel (104) for execution.

Kernel (104) provides kernel service (406) in response to
receiving the second system call. If the kernel service (406)
generates a response, kernel (104) sends (418) the response to
kernel sharing interface (402). The response generated by
kernel (104) has form and content compatible with kernel
(104).

Upon receiving the response from kernel (104), kernel
sharing interface (402) generates a second response. The
second response generated by kernel sharing interface (402)
has form and content compatible with kernel (102). Kernel
sharing interface (402) sends (412) the second response to
kernel (102). Kernel (102) returns (436) the second response
to the calling application (108).

For further explanation, FIG. 4B sets forth a functional
block diagram illustrating a further exemplary system for
sharing kernel services among kernels according to embodi-
ments of the present invention. The system of FIG. 4B
includes logical partition (114) running application (108),
partition manager (112), and kernels (102, 104), which share
kernel service (406), all running in computer (152).

In the system of FIG. 4B, application (108), sends (438) a
system call to a kernel (102) in partition manager (112).
Kernel (102) includes a sharing module (420) and a kernel
sharing interface (422). Sharing module (420) is a software
module of kernel (102) that determines whether a kernel
service called in a system call is to be provided by another
kernel. Kernel sharing interface (422) is a software module of
kernel (102) that directs communications to and from kernels
(102, 104), and transforms the communications to appropri-
ate form and content for the recipient of the communications.
Sharing module (420) determines whether the system call
received from application (108) requests a kernel service to
be provided by the second kernel (104). If the system call
received from application (108) includes a call for a kernel
service to be provided by the second kernel (104), kernel
sharing interface (422) generates a second system call with
form and content compatible with the second kernel (104).
Kernel sharing interface (422) sends (426) the second system
call to kernel (104).

In the example of FIG. 4B, kernel (104) includes kernel
sharing interface (424). Kernel sharing interface (424) calls
(428) the kernel service (406) and receives (430) a response
from the kernel service (406), if the kernel service generates
a response.

US 9,201,703 B2

11

The response generated by kernel service (406) has form
and content compatible with kernel (104). Kernel sharing
interface (424) generates a second response with form and
content compatible with kernel (102). Kernel sharing inter-
face (424) sends (432) the second response to kernel (102).
Kernel (102) receives the second response and returns (440) it
to the calling application (108).

For further explanation, FIG. 5 sets forth a flow chart
illustrating an exemplary method for sharing kernel services
among kernels according to embodiments of the present
invention. The method of FIG. 5 may be carried out in a
computer (152) having one or more logical partitions (114),
one or more applications (108) running in the one or more
logical partitions (114), a partition manager (112), and two or
more kernels (102, 104) in the partition manager (112). In the
example of FIG. 5, partition manager (112) assigns resources
to logical partitions as the logical partitions are booted. At
boot time for logical partition (114), the partition manager
(112) assigned first kernel (102) as a resource for the logical
partition (114) to provide kernel services to application (108)
running in the logical partition (114).

The method of FIG. 5 includes receiving (508), by the
partition manager (112) from an application (108) in a logical
partition (114), a first system call (502) for a kernel service
(522) from a first kernel (102). In the example of FIG. 5, a
system call is an instruction issued by an application or by an
application through a function of a system call library to a
kernel to execute a kernel service.

The first system call (502) has form (504) and content (506)
compatible with the first kernel (102). In the example of FIG.
5, the form (504) of system call (502) is the sequence of call
parameters, and the content (506) of a system call (502) is the
identity of the system call and the values of the call param-
eters. The identity of the system call may be represented by a
name for the system call or by the value of an interrupt vector.
The form and content of system call (502) are compatible
with the first kernel (102) because, from the perspective of the
application (108), the logical partition (114) appears to be an
entire computer with only kernel (102) to provide kernel
services. Application (108) and logical partition (114) are
unaware of any kernel other than kernel (102); application
(108) and logical partition (114) therefore provide system
calls to kernel (102) with form and content compatible with
kernel (102).

The method of FIG. 5 also includes generating (510), in
dependence upon the first system call (502), a second system
call (512) for the kernel service (522) from a second kernel
(104). The second system call (512) has form (514) and
content (516) compatible with the second kernel (104). In the
example of FIG. 5, generating (510) a second system call
(512) for the kernel service (522) from a second kernel (104)
is carried out by partition manager (112). Partition manager
(112) may generate the second system call, for example, by
use of a data structure such as the one illustrated as Table 1:

TABLE 1
Logical Primary Shared Received Generated
Partition Kernel Kemel Call Call
114 102 104 Fx,v,2) F(y, %, 2)
114 102 104 G(,,w) M(w)
114 102 104 A() B()
114 102 104 C(q, 1) C(t, 1)

Each record of Table 1 associates a logical partition iden-
tifier, a primary kernel identifier, a shared kernel identifier,
and a received system call to a generated system call that

10

15

20

25

30

35

40

45

50

55

60

65

12

specifies form and content of a system call to be sent to the
shared kernel. In Table 1, received calls have both a form, e.g.,
the parameters specified in the call and their order, and con-
tent, e.g., the keyword used to invoke a function and the value
of the parameters. In the first record of Table 1, for example,
the form of the received call includes parameters “x, y, z” in
that order and the content includes command keyword “F”
and the values of X, y, and z. In the example of FIG. 5, kernel
(102) is the primary kernel, because it is the kernel assigned to
provide kernel services to the logical partition (114). Kernel
(104) is the shared kernel in the example of FIG. 5, because it
is the kernel sharing one of its services. System call (502) is
the received call in the example of FIG. 5, and second system
call (512) is the generated call. The partition manager, upon
receiving a system call from an application in a logical par-
tition, may, by use of the primary kernel identifier associated
with the logical partition, lookup in a data structure, such as
Table 1, the received system call to identify the form and
content required for the generated system call. The partition
manager may then generate the second system call by form-
ing an instruction with the appropriate keywords, parameters,
etc. to give the second system call form and content compat-
ible with the shared kernel.

The method of FIG. 5 also includes sending (518) the
second system call (512) to the second kernel (104) for execu-
tion. In the example of FIG. 5, the partition manager (112),
having generated the second system call (512), sends the
system call to the second kernel (104). The partition manager
may identify the second kernel (104) by reference to a data
structure such as Table 1. In the first record of Table 1, for
example, the shared kernel for a system call received from a
logical partition with logical partition identifier ‘114 to a
primary kernel with primary kernel identifier ‘102 having
form and content ‘F(x, y, z)’ corresponds to a shared kernel
with a shared kernel identifier of “104°. The partition manager
in this example, therefore, generates a call with form and
content ‘F(y, x,)’ and sends the generated call to kernel (104)
for execution. Sending (518) the second system call (512) to
the second kernel (104) for execution may be carried out by
use of a kernel sharing interface as described above with
regard to references (124, 402,422, 424) on FIGS. 2, 4A, and
4B.

The method of FIG. 5 also includes providing (520), by the
second kernel (104), the kernel service (522). The second
kernel (104) in the example of FIG. 5, provides the kernel
service by executing the second system call (512) with
parameters specified by the content (516) of the second sys-
tem call (512).

The method of FIG. 5 also includes providing (550) a
response to the second system call (512) as part of providing
(520) the kernel service (522). Kernel (104) may provide a
response as part of providing a kernel service, if, for example,
the kernel service (522) generates a response. Persons of skill
in the art, having benefit of the present specification, will
recognize that not all kernel services generate a response to a
system call. Kernel services that do not provide a response
are, nevertheless, within the scope of the present invention.

In the method of FIG. 5, the response (552) provided by
kernel (104) has form (554) and content (556) compatible
with kernel (104). In the method of FIG. 5, kernel (104)
provides the response (552) as though second system call
(512) were a system call from an application using kernel
(104) to provide kernel services. Kernel (104) provides a
response (552), therefore, that has the form (554) and content
(556) that an application using kernel (104) for kernel ser-
vices would expect in a response from kernel (104), i.e., a
response with form and content compatible with kernel (104).

US 9,201,703 B2

13

The method of FIG. 5 also includes receiving (558) the first
response (552) from kernel (104) and generating (560) a
second response (526). In the example of FIG. 5, the partition
manager (112) receives (558) the response from kernel (104)
and generates (560) the second response (526). The second
response (526), generated by the partition manager (112), has
form (528) and content (530) compatible with kernel (102).
The second response (526) has form (528) and content (530)
compatible with kernel (102) because application (108) is
expecting a response to system call (502) to come from kernel
(102), and therefore to have form and content compatible with
kernel (102).

The method of FIG. 5 also includes sending (524) a
response (526) to the application (108) in the logical partition
(114). In the example of FIG. 5, sending (524) response (526)
to the application (108) in the logical partition (114) is carried
out by partition manager (112). From the perspective of appli-
cation (108), it appears that kernel (102) provided the kernel
service (522).

For further explanation, FIG. 6 sets forth a flow chart
illustrating a further exemplary method for sharing kernel
services among kernels according to embodiments of the
present invention. The method of FIG. 6 is similar to the
method of FIG. 5. That is, the method of FIG. 6 includes
receiving (508), by the partition manager (112) from an appli-
cation (108) in a logical partition (114), a first system call
(502) for a kernel service (522) from a first kernel (102), the
first system call having form (504) and content (506) com-
patible with the first kernel (102). Like the method of FIG. 5,
the method of FIG. 6 includes generating (510), in depen-
dence upon the first system call (502), a second system call
(512) for the kernel service (522) from a second kernel (104),
where the second system call (512) has form (514) and con-
tent (516) compatible with the second kernel (104). Like the
method of FIG. 5, the method of FIG. 6 includes sending
(518) the second system call (512) to the second kernel (104)
for execution, and providing (520) the kernel service (522)
including providing (550) a response (808), all of which
operate generally as described above with reference to the
method of FIG. 5. In the method of FIG. 6, however, unlike
the method of FIG. 5, the first kernel (102) generates the
second system call (512).

The method of FIG. 6 also includes receiving (602), by the
first kernel (102), the first system call (502). In the example of
FIG. 6, the partition manager receives (508) the first system
call (502), determines that kernel (102) provides kernel ser-
vices to the application that generated the system call, and
sends the system call to kernel (102).

The method of FIG. 6 also includes determining (604), by
the first kernel (102), that the kernel service (522) is to be
provided by the second kernel (104). Kernel (102) may deter-
mine that the kernel service (522) is to be provided by kernel
(104), for example, by use of a data structure such as the one
illustrated in Table 2:

TABLE 2
Received System Generated System
Call Shared Kernel Call
F(x,y,2) 104 F(y,x,2)
G(,,w) 104 M(w)

Each record of Table 2 associates a received system call to
a shared kernel that is to provide the kernel service identified
in the system call, and specifies form and content of a system
call to the shared kernel for the kernel service. If a received

10

15

20

25

30

35

40

45

50

55

60

65

14

system call is associated with a shared kernel in such a data
structure, then kernel (102) may determine that the kernel
service called by the system call is to be provided by a second
kernel, i.e., the shared kernel.

The method of FIG. 6 also includes generating (510), by
the first kernel (102) in dependence upon the first system call
(502), the second system call (512) for the kernel service
(522) from the second kernel (104). Kernel (102) may gen-
erate the second system call (512) by reference to a data
structure, such as the data structure illustrated in Table 2. In
Table 2, received system calls have both a form, e.g., the
parameters specified in the call and their order, and content,
e.g., the command keyword used to invoke a function and the
value of the parameters. In the first record of Table 2, for
example, the form ofthe received call includes parameters “x,
y, "’ in that order and the content includes command keyword
“F” and the values of X, y, and z. In the example of FIG. 6,
kernel (102) is the primary kernel, because it is the kernel
assigned to provide kernel services to the logical partition
(114). Kernel (104) is the shared kernel in the example of FIG.
6, because it is the kernel sharing one of its services. System
call (502) is the received system call in the example of F1G. 6,
and second system call (512) is the generated system call.
Kernel (102), upon receiving a system call from partition
manager (112), may, by use of the received system call iden-
tifier, lookup in a data structure, such as Table 2, the identity
of a shared kernel that provides the kernel service and the
form and content required for a generated system call to the
shared kernel for the kernel service. Kernel (102) may then
generate the second system call (512) by forming an instruc-
tion with the appropriate keywords and parameters, in the
correct form to be compatible with the shared kernel.

The method of FIG. 6 includes providing (520), by the
second kernel (104), the kernel service (522), including pro-
viding (550) a response generated by the kernel service. In
this example, the second kernel (104) provides to the first
kernel (102), a response (808) to the second system call (512)
where the response (808) has form (810) and content (812)
compatible with the first kernel (102). Thus kernel (104) in
this example is configured with information sufficient to
allow it to formulate a response compatible with kernel (102).
Alternatively, kernel (104) may provide a response having
form and content compatible with kernel (104), and kernel
(102) may be configured to convert that response to have form
and content compatible with kernel (102). Either way, by the
time the response is returned to the calling partition and the
calling application, the response will have form and content
compatible with kernel (102) because kernel (102) compat-
ible return data is what the calling application is expecting.

The method of FIG. 6 also includes receiving (814) the
response (808) in the first kernel (102) and sending (816) the
response from the first kernel (102) to the application (108).
Because response (808) in this example already has form
(810) and content (812) compatible with kernel (102), send-
ing (816) the response from the first kernel (102) to the
application (108) may be carried out by passing the response
without modification through kernel (102) to application
(108).

For further explanation, FIG. 7 sets forth a flow chart
illustrating a further exemplary method for sharing kernel
services among kernels according to embodiments of the
present invention. The method of FIG. 7 is similar to the
method of FIG. 5. That is, the method of FIG. 7 includes
receiving (508), by the partition manager (112) from an appli-
cation (108) in a logical partition (114), a first system call
(502) for a kernel service (521) from a first kernel (102), the
first system call having form (504) and content (506) com-

US 9,201,703 B2

15

patible with the first kernel (102), and generating (510), in
dependence upon the first system call (502), a second system
call (704) for the kernel service (522) from a second kernel
(104). In this example, kernel service (521) and kernel service
(522) are equivalent kernel services, for example, a disk i/o
request, a memory allocation request, and so on. Kernel ser-
vice (521) is the form of the service as provided by kernel
(102), and kernel service (522) is the form of the same service
as provided by kernel (104). Kernel (102) is configured to
acquire upon request the type of service represented by ser-
vice (521) from kernel (104). Kernel (104) is configured to
share kernel service (522) according to embodiments of the
present invention.

In the method of FIG. 7, however, unlike the method of
FIG. 5, the first kernel (102) generates the second system call
(704). Also in the method of FIG. 7, generating (510), in
dependence upon the first system call (502), a second system
call for the kernel service (522) from a second kernel (104) is
carried out by generating (702) a generic system call (704).
The generic system call (704) in this example is a system call
having generic form (706) and generic content (708). The
generic form and content are a form and content accepted as
compatible by a plurality of kernels, including, in this
example, the second kernel (104).

The method of FIG. 7 also includes sending (518) the
second, generic system call (704) to the second kernel (104)
for execution. In the example of F1G. 7, the partition manager
(112), having generated the second, generic system call
(704), sends (518) the generic system call (704) to the second
kernel (104). The partition manager may identify the second
kernel (104) by reference to a data structure such as Table 1.
Sending (518) the second, generic system call (704) to the
second kernel (104) for execution may be carried out by use
of'akernel sharing interface as described above with regard to
references (124, 402, 422, 424) on FIGS. 2, 4A, and 4B.

In the method of FIG. 7 providing (710), by the second
kernel (104), the kernel service (522), includes providing
(712), by the second kernel (104) a generic response (714) to
the generic system call (704). The generic response (714) in
this example is a response having generic form (716) and
generic content (718). The generic form and content are a
form and content accepted as compatible by a plurality of
kernels, including, in this example, the first kernel (102).

Exemplary embodiments of the present invention are
described largely in the context ofa fully functional computer
system for sharing kernel services among kernels. Readers of
skill in the art will recognize, however, that the present inven-
tion also may be embodied in a computer program product
disposed on recordable media for machine-readable informa-
tion, including magnetic media, optical media, or other suit-
able media. Examples of recordable media include magnetic
disks in hard drives or diskettes, compact disks for optical
drives, magnetic tape, and others as will occur to those of skill
in the art. Persons skilled in the art will immediately recog-
nize that any computer system having suitable programming
means will be capable of executing the steps of the method of
the invention as embodied in a program product. Persons
skilled in the art will recognize immediately that, although
some of the exemplary embodiments described in this speci-
fication are oriented to software installed and executing on
computer hardware, nevertheless, alternative embodiments
implemented as firmware or as hardware are well within the
scope of the present invention.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi-
ments of the present invention without departing from its true
spirit. The descriptions in this specification are for purposes

10

15

20

25

30

35

40

45

50

55

60

65

16

of illustration only and are not to be construed in a limiting
sense. The scope of the present invention is limited only by
the language of the following claims.

What is claimed is:

1. A method of sharing kernel services among kernels, the
method implemented upon automated computing machinery
comprising at least a computer processor and a computer
memory operatively coupled to the computer processor, the
method comprising:

receiving, by a partition manager from an application in a

logical partition, a first system call for a kernel service
from a first kernel, the first system call having form and
content compatible with the first kernel;

generating, in dependence upon the first system call, a

second system call for the kernel service from a second
kernel, the second system call having form and content
compatible with the second kernel; and

sending the second system call through the partition man-

ager to the second kernel for execution;

providing, by the second kernel, the kernel service; and

sending a response to the application in the logical parti-

tion, the response having form and content compatible
with the first kernel.

2. The method of claim 1 further comprising:

receiving, by the first kernel, the first system call; and

determining, by the first kernel, that the kernel service is to

be provided by the second kernel;

wherein generating, in dependence upon the first system

call, the second system call for the kernel service from
the second kernel, comprises generating, by the first
kernel in dependence upon the first system call, the
second system call for the kernel service from the second
kernel.

3. The method of claim 1 wherein generating, in depen-
dence upon the first system call, the second system call for the
kernel service from the second kernel comprises generating a
generic system call.

4. The method of claim 1 wherein providing, by the second
kernel, the kernel service includes providing by the second
kernel a generic response to the second system call.

5. The method of claim 1 wherein providing, by the second
kernel, the kernel service includes providing, by the second
kernel to the first kernel, a response to the second system call,
the response to the second system call having form and con-
tent compatible with the first kernel.

6. An apparatus for sharing kernel services among kernels,
the apparatus comprising a computer processor and a com-
puter memory operatively coupled to the computer processor,
the computer memory having disposed within it computer
program instructions capable of:

receiving, by a partition manager from an application in a

logical partition, a first system call for a kernel service
from a first kernel, the first system call having form and
content compatible with the first kernel;

generating, in dependence upon the first system call, a

second system call for the kernel service from a second
kernel, the second system call having form and content
compatible with the second kernel; and

sending the second system call through the partition man-

ager to the second kernel for execution;

providing, by the second kernel, the kernel service; and

sending a response to the application in the logical parti-

tion, the response having form and content compatible
with the first kernel.

US 9,201,703 B2

17

7. The apparatus of claim 6 further comprising computer
program instructions capable of:

receiving, by the first kernel, the first system call; and

determining, by the first kernel, that the kernel service is to

be provided by the second kernel;

wherein generating, in dependence upon the first system

call, the second system call for the kernel service from
the second kernel, comprises generating, by the first
kernel in dependence upon the first system call, the
second system call for the kernel service from the second
kernel.

8. The apparatus of claim 6 wherein generating, in depen-
dence upon the first system call, the second system call for the
kernel service from the second kernel comprises generating a
generic system call.

9. The apparatus of claim 6 wherein providing, by the
second kernel, the kernel service includes providing by the
second kernel a generic response to the second system call.

10. The apparatus of claim 6 wherein providing, by the
second kernel, the kernel service includes providing, by the
second kernel to the first kernel, a response to the second
system call, the response to the second system call having
form and content compatible with the first kernel.

11. A computer program product for sharing kernel ser-
vices among kernels, the computer program product disposed
upon a computer-readable recording medium, the computer
program product comprising computer program instructions
capable of:

receiving, by a partition manager from an application in a

logical partition, a first system call for a kernel service
from a first kernel, the first system call having form and
content compatible with the first kernel;

generating, in dependence upon the first system call, a

second system call for the kernel service from a second

5

20

25

18

kernel, the second system call having form and content
compatible with the second kernel; and

sending the second system call through the partition man-

ager to the second kernel for execution;

providing, by the second kernel, the kernel service; and

sending a response to the application in the logical parti-

tion, the response having form and content compatible
with the first kernel.

12. The computer program product of claim 11 further
comprising computer program instructions capable of:

receiving, by the first kernel, the first system call; and

determining, by the first kernel, that the kernel service is to
be provided by the second kernel;

wherein generating, in dependence upon the first system

call, the second system call for the kernel service from
the second kernel, comprises generating, by the first
kernel in dependence upon the first system call, the
second system call for the kernel service from the second
kernel.

13. The computer program product of claim 11 wherein
generating, in dependence upon the first system call, the
second system call for the kernel service from the second
kernel comprises generating a generic system call.

14. The computer program product of claim 11 wherein
providing, by the second kernel, the kernel service includes
providing by the second kernel a generic response to the
second system call.

15. The computer program product of claim 11 wherein
providing, by the second kernel, the kernel service includes
providing, by the second kernel to the first kernel, a response
to the second system call, the response to the second system
call having form and content compatible with the first kernel.

#* #* #* #* #*

